Environmental Protection Agency

§ 1066.610

$$V_{\text{[flow]}} = \overline{\dot{Q}} \cdot \Delta t$$

Eq. 1066.605-9

Example:

$$\overline{\dot{Q}}_{\rm CVS} = 0.338 \text{ m}^3/\text{s}$$

$$\Delta t = 505 \text{ s}$$

$$V_{\text{CVS}} = 0.338 \cdot 505$$

$$V_{\rm CVS} = 170.69 \text{ m}^3$$

§1066.610 Dilution air background correction.

(a) Correct the emissions in a gaseous sample for background using the following equation:

$$x_{\text{[emission]}} = x_{\text{[emission]dexh}} - x_{\text{[emission]bkgnd}} \cdot \left(1 - \left(\frac{1}{DF}\right)\right)$$

Eq. 1066.610-1

Where:

 $x_{\rm lemission | dexh} = {
m measured \ emission \ concentration \ in \ dilute \ exhaust \ (after \ dry-to-wet \ correction, \ if applicable).}$

 $x_{\rm lemission]bkgnd}$ = measured emission concentration in the dilution air (after dry-to-wet correction, if applicable).

DF = dilution factor, as determined in paragraph (b) of this section.

40 CFR Ch. I (7-1-14 Edition)

§ 1066.610

Example:

 $x_{\text{NOxdexh}} = 1.08305 \text{ ppm}$

 $x_{\text{NOxbkgnd}} = 0.12456 \text{ ppm}$

DF = 9.14506

$$x_{\text{NOx}} = 1.08305 - 0.12456 \cdot \left(1 - \left(\frac{1}{9.14506}\right)\right) = 0.97211 \text{ ppm}$$

(b) Except as specified in paragraph (c) of this section, determine the dilution factor, *DF*, over the test interval using the following equation:

$$DF = \frac{1}{\left(1 + \frac{\alpha}{2} + 3.76 \cdot \left(1 + \frac{\alpha}{4} - \frac{\beta}{2}\right)\right) \cdot (x_{\text{CO2}} + x_{\text{NMHC}} + x_{\text{CH4}} + x_{\text{CO}})}$$

Eq. 1066.610-2

Where:

 $x_{\rm CO2}$ = amount of CO₂ measured in the sample over the test interval.

 x_{NMHC} = amount of C₁-equivalent NMHC measured in the sample over the test interval.

 x_{CH4} = amount of CH₄ measured in the sample over the test interval.

 $x_{\rm CO}$ = amount of CO measured in the sample over the test interval.

 α = atomic hydrogen-to-carbon ratio of the test fuel. You may measure α or use default values from Table 1 of 40 CFR 1065.655.

 β = atomic oxygen-to-carbon ratio of the test fuel. You may measure β or use default values from Table 1 of 40 CFR 1065.655.

Environmental Protection Agency

§ 1066.610

Example:

$$x_{\text{CO2}} = 1.456 \% = 0.01456$$

$$x_{\text{NMHC}} = 0.84 \text{ ppm} = 0.00000084$$

$$x_{\text{CH4}} = 0.26 \text{ ppm} = 0.00000026$$

$$x_{\rm CO} = 80.4 \text{ ppm} = 0.0000804$$

$$\alpha$$
 = 1.92

$$\beta = 0.03$$

$$DF = \frac{1}{\left(1 + \frac{1.92}{2} + 3.76 \cdot \left(1 + \frac{1.92}{4} - \frac{0.03}{2}\right)\right) \cdot \left(0.01456 + 0.00000084 + 0.00000026 + 0.0000804\right)} = 9.14506$$

(c) Determine the dilution factor, DF, dilution sample systems using the folover the test interval for partial-flow lowing equation:

$$DF = \frac{V_{\text{dexhstd}}}{V_{\text{exhstd}}}$$

Eq. 1066.610-3

Where:

 $V_{\rm dexhstd}$ = total dilute exhaust volume sampled over the test interval, corrected to standard reference conditions.

 $V_{\rm exhstd} = {\rm total}$ exhaust volume sampled from the vehicle, corrected to standard reference conditions.

Example:

$$V_{\text{dexhstd}} = 170.9 \text{ m}^3$$

$$V_{\text{exhstd}} = 15.9 \text{ m}^3$$

$$DF = \frac{170.9}{15.4} = 11.1$$

(d) Determine the time-weighted dilution factor, $DF_{\rm w}$, over the duty cycle using the following equation:

40 CFR Ch. I (7-1-14 Edition)

§ 1066.615

$$DF_{w} = \frac{\sum_{i=1}^{N} t_{i}}{\sum_{i=1}^{N} \frac{1}{DF_{i}} \cdot t_{i}}$$

Eq. 1066.610-4

Where:

N = number of test intervals. i = test interval number

$$N=3$$

$$DF_1 = 14.40$$

$$t_1 = 505 \text{ s}$$

$$DF_2 = 24.48$$

$$t_2 = 867 \text{ s}$$

$$DF_3 = 17.28$$

$$t_3 = 505 \text{ s}$$

t= duration of the test interval. DF= dilution factor over the test interval. Example:

$$DF_{w} = \frac{505 + 867 + 505}{\left(\frac{1}{14.40} \cdot 505\right) + \left(\frac{1}{24.48} \cdot 867\right) + \left(\frac{1}{17.28} \cdot 505\right)} = 18.82$$

1066.615 NO $_{\rm X}$ intake-air humidity correction.

You may correct NO_X emissions for intake-air humidity as described in this section if the standard-setting part allows it. See §1066.605(c)(1) for the proper sequence for applying the NO_X intake-air humidity correction.

- (a) For vehicles at or below 14,000 pounds GVWR, apply a correction for vehicles with reciprocating engines operating over specific test cycles as follows:
- (1) Calculate a humidity correction using a time-weighted mean value for ambient humidity over the test interval. Calculate absolute ambient humidity, H, using the following equation: